

SULFUR CONCENTRATION AND UPTAKE BY TIFTON 85 BERMUDAGRASS IN FIVE CUTTINGS IN 2004

Vincent Haby, Allen Leonard, and Mike Stewart

Background. The response of Tifton 85 bermudagrass to sulfur (S) was evaluated in a potassium rate and source at two N-rates study that was adequately fertilized with 180 lb P₂O₅/ac disked into the Darco soil at initiation of the study in 2001. In 2002, 2003, and 2004, an additional 120 lb of P₂O₅/ac/yr as triple superphosphate (0-46-0) was surface-applied at growth initiation of the Tifton 85 bermudagrass each spring. Potassium sources were potassium chloride (KCl, 0-0-62-47% Cl), potassium sulfate (K₂SO₄, 0-0-50-17.6% S), and KCl plus elemental S. Potassium rates from all sources were 0, 134, 268, and 402 lb/ac as K₂O split-applied one-third at growth initiation and one-third each following two early-season harvests to 10 x 18-ft plots that received 80 or 160 lb of N/ac for each bermudagrass regrowth during the 2004 growing season. Sulfur as K₂SO₄ was applied at rates of 47, 94, and 142 lb/ac. Equal rates of S were applied as granular elemental S (Dispersal, 90% S) in the KCl + S treatments. Yield data and samples of Tifton 85 plant material were collected from each plot at each harvest for dry matter/chemical analysis using a Swift Machine forage plot harvester (Swift Current, Saskatchewan Canada.) Plant samples were dried at 60 °C, ground in a Wiley mill to < 20-mesh, and analyzed for S in an Elementar VarioMax CNS analyzer.

Research Findings. The season average S concentration in Tifton 85 bermudagrass declined from 0.29% to 0.27% as the N rate applied for each bermudagrass harvest was increased from 80 to 160 lbs/ac (Table 1). However, bermudagrass plant uptake of S tended to increase with increasing N rate (Table 2). As a rate of K₂O from all sources was increased from zero to 402 lb/ac, both the concentration and total uptake of S for the season were incrementally increased with each increase in K₂O rate averaged over all sources including KCl without S. Bermudagrass S concentration increased from 0.18% when no S was applied to 0.34% at the highest rate of S application. Sulfur uptake was about 48 lb/ac for the season at the high S application rate. Application of S as K₂SO₄ significantly increased S concentration to 0.37% compared to 0.33% when elemental S was applied with KCl. Sulfur uptake was significantly increased to 50 lb/ac when S was applied as K₂SO₄ compared to about 46 lb/ac when elemental S was applied with KCl. These differences in S concentration and plant sulfur uptake generally occurred throughout the growing season with increasing S rate.

Application. Sulfur is important for plant protein formation. From the beginning of this study in 2001, bermudagrass growing in plots that received no S continually exhibited a pale

yellowish green color indicative of S deficiency. Sulfur application, averaged over all rates, increased Tifton 85 bermudagrass dry matter yields 1300 lb/ac where K_2SO_4 was the sulfur source and by more than 1.0 ton of dry matter/ac when elemental S was applied with KCl compared to KCl without applied S. Sulfur levels in soil will be in a separate report.

Table 1. Tifton 85 bermudagrass S conc. response to N and K rates and K and S sources in 2004.

N rate lb/ac/harv.	Plant S concentration [†]					
	Harvest 1	Harvest 2	Harvest 3	Harvest 4	Harvest 5	Season avg.
80	0.32 a	0.32	0.22 a	0.30	0.28	0.29 a
160	0.29 b	0.30	0.20 b	0.27	0.28	0.27 b
K rate lb K_2O /ac	%					
0	0.26 c	0.22 d	0.13 d	0.15 d	0.17 d	0.18 d
134	0.30 b	0.27 c	0.17 c	0.23 c	0.24 c	0.24 c
268	0.30 b	0.32 b	0.22 b	0.30 b	0.29 b	0.29 b
402	0.34 a	0.40 a	0.29 a	0.35 a	0.35 a	0.34 a
K Source						
KCl	0.27 b	0.21 c	0.13 b	0.15 c	0.15 c	0.18 c
K_2SO_4	0.33 a	0.41 a	0.27 a	0.44 a	0.40 a	0.37 a
KCl + S	0.35 a	0.36 b	0.27 a	0.31 b	0.34 b	0.33 b
R ²	0.72	0.86	0.90	0.96	0.93	0.96
c.v.	14.9	17.4	17.9	12.7	14.3	9.1

[†]Values in a column/group followed by a dissimilar letter are significantly different statistically ($\alpha = 0.05$).

Table 2. Tifton 85 bermudagrass S uptake response to N and K rates and K and S sources in 2004.

N rate lb/ac/harv.	Plant S uptake [†]					
	Harvest 1	Harvest 2	Harvest 3	Harvest 4	Harvest 5	Total
80	3.40	4.85	6.15	10.13 b	9.21	33.74
160	3.60	5.05	5.71	11.81 a	12.16	38.33
K rate lb K_2O /ac	lb/ac					
0	2.38 c	2.47 d	2.34 d	3.94 d	5.00 d	16.13 d
134	3.25 b	4.05 c	4.32 c	8.70 c	8.79 c	29.11 c
268	3.62 ab	5.08 b	6.28 b	12.17 b	10.82 b	37.97 b
402	4.01 a	6.56 a	8.39 a	14.36 a	14.34 a	47.66 a
K Source						
KCl	2.93 c	3.03 c	2.91 b	5.12 c	5.33 b	19.31 c
K_2SO_4	3.75 b	6.70 a	7.97 a	17.06 a	14.40 a	49.88 a
KCl + S	4.20 a	5.95 b	8.12 a	13.06 b	14.22 a	45.55 b
R ²	0.74	0.86	0.87	0.93	0.93	0.93
c.v.	21.8	21.2	26.1	18.9	17.8	12.5

[†]Values in a column/group followed by a dissimilar letter are significantly different statistically ($\alpha = 0.05$).