## ALFALFA RESPONSE TO GYPSUM AND CALCIUM SULFITE SLUDGE APPLIED TO ACID SOILS TO REDUCE PHYTOTOXICITY OF SUBSOIL ALUMINUM

Dennis Chessman, Allen Leonard, and Vincent Haby

**Background.** Soil acidity and acidity-affected soil properties inhibit plant growth. Acidity begins rapid solubilization of soil aluminum at pH levels below 5.5. Aluminum availability increases exponentially as soil pH declines below 5.0. Aluminum becomes toxic to root growth on sensitive plants, thereby limiting uptake of water and nutrients. incorporation of limestone for neutralization of acidity in subsoils is uneconomical. Most coolseason forages and some forages that predominantly grow in the warm season are sensitive to high levels of aluminum. Alfalfa, a high nutritive-quality forage, is sensitive to acid soils and the aluminum component. Neutralization of toxic levels of aluminum in subsoils will allow producers to grow alfalfa on a wider range of acid soils. Gypsum, a neutral salt, has been shown to detoxify subsoil aluminum. When gypsum is applied to the surface horizon of a soil that has acid subsoil, the calcium and sulfate are moved into the subsoil through a series of adsorption, fixation, and exchanges aided by gravitational water flow. Movement of these ions into subsoils supplies calcium and sulfur, increases soil ionic strength, reduces the toxicity of aluminum, and in gypsum-responsive soils, slightly raises subsoil pH. The result is that roots of acid-sensitive plants are able to proliferate in previously unavailable zones, enabling them to more efficiently extract water and plant nutrients. Four replications of gypsum and calcium sulfite sludge treatments were applied at rates of 2.3, 4.5, and 6.8 tons/acre to two soils selected for high-subsoil aluminum content. One soil was a Cuthbert fine sandy loam on the Texas Agricultural Experiment Station research farm at Overton. The second soil was a Sacul very fine sandy loam on the Stephen F. Austin State University Todd Beef Farm near Nacogdoches. Each soil was limed and fertilized as needed for alfalfa that was seeded in fall of 1999. Each plot at these field sites was sampled at depths of zero to 6, 6 to 12, 12 to 24, 24 to 36, and 36 to 48 inches before treatment. After treatments were applied, samples were taken from the same depths semiannually to monitor effected changes in the soil. Alfalfa yield response to treatments is reported.

Research Findings. Tables 1 and 2 show alfalfa dry matter yield as affected by gypsum and calcium sulfite sludge treatments for two years on both soils. In all harvests, dry matter yield was low and was not affected by application of either amendment. Low alfalfa yields are expected with high levels of aluminum, particularly when the aluminum is near the soil surface.

Application. The effectiveness of gypsum or calcium sulfite applied to reduce subsoil acidity will need to be monitored over a longer time in order to see benefits in increased yield.

Table 1. Alfalfa response to gypsum<sup>†</sup> and calcium sulfite<sup>‡</sup> sludge applied to reduce phytotoxic levels of aluminum in subsoils on a Sacul soil site on the Stephen F. Austin State University Todd Beef Farm<sup>§</sup>.

| Treatment, t/ac                           | Alfalfa yield by harvest and total |           |              |           |       |  |  |
|-------------------------------------------|------------------------------------|-----------|--------------|-----------|-------|--|--|
|                                           | Harvest 1                          | Harvest 2 | Harvest 3    | Harvest 4 | Total |  |  |
|                                           | Dry matter, lb/ac                  |           |              |           |       |  |  |
| 2000                                      |                                    |           |              |           |       |  |  |
| Check                                     | 1,297                              | 2,317     | 2,220        |           | 5,834 |  |  |
| $CaSO_4$ $2H_2O$ , 2.3                    | 1,230                              | 2,076     | 2,191        |           | 5,497 |  |  |
| CaSO <sub>4</sub> 2H <sub>2</sub> O, 4.5  | 1,355                              | 2,049     | 2,123        |           | 5,527 |  |  |
| $CaSO_4 \cdot 2H_2O$ , 6.8                | 1,168                              | 1,711     | 1,969        |           | 4,848 |  |  |
| $CaSO_3 \cdot \frac{1}{2}H_2O, 2.3$       | 1,202                              | 1,976     | 2,137        |           | 5,315 |  |  |
| CaSO <sub>3</sub> ½H <sub>2</sub> O, 4.5  | 880                                | 1,911     | 1,895        |           | 4,686 |  |  |
| $CaSO_3 \cdot \frac{1}{2}H_2O$ , 6.8      | 1,455                              | 2,143     | 2,090        |           | 5,690 |  |  |
| R <sup>2</sup>                            | 0.63                               | 0.46      | 0.37         |           | 0.51  |  |  |
| C.V.                                      | 35.3                               | 24.1      | 13. <b>8</b> |           | 18.9  |  |  |
| 2001                                      |                                    |           |              |           |       |  |  |
| Check                                     | 2,159                              | 1,124     | 911          | 588       | 4,782 |  |  |
| $CaSO_4 \cdot 2H_2O$ , 2.3                | 1,819                              | 1,281     | 617          | 511       | 4,228 |  |  |
| CaSO <sub>4</sub> ·2H <sub>2</sub> O, 4.5 | 1,716                              | 1,013     | 737          | 528       | 3,992 |  |  |
| CaSO <sub>4</sub> ·2H <sub>2</sub> O, 6.8 | 1,864                              | 1,532     | 559          | 528       | 4,483 |  |  |
| CaSO3 · ½H2O, 2.3                         | 1,760                              | 1,117     | 939          | 500       | 4,316 |  |  |
| $CaSO3 \cdot \frac{1}{2}H2O, 4.5$         | 1,880                              | 1,221     | 602          | 414       | 4,116 |  |  |
| $CaSO_3 \cdot \frac{1}{2}H_2O$ , 6.8      | 1,857                              | 1,084     | 686          | 568       | 4,195 |  |  |
| R <sup>2</sup>                            | 0.34                               | 0.27      | 0.56         | 0.42      | 0.33  |  |  |
| C.V.                                      | 21.2                               | 35.9      | 31.8         | 36.8      | 24.7  |  |  |

Gypsum is calcium sulfate, CaSO<sub>4</sub>·2H<sub>2</sub>O Calcium sulfite is CaSO<sub>3</sub>·½H<sub>2</sub>O Yields were not statistically different.

Table 2. Alfalfa response to gypsum<sup>†</sup> and calcium sulfite<sup>‡</sup> sludge applied to reduce phytotoxic levels of aluminum in subsoils on a Cuthbert soil site on the Texas Agricultural Experiment Station at Overton.<sup>§</sup>

| Treatment, t/ac                          | Alfalfa yield by harvest and total |             |           |           |       |  |  |
|------------------------------------------|------------------------------------|-------------|-----------|-----------|-------|--|--|
|                                          | Harvest 1                          | Harvest 2   | Harvest 3 | Harvest 4 | Total |  |  |
|                                          | Dry matter, lb/ac                  |             |           |           |       |  |  |
| 2000                                     |                                    |             | -         |           |       |  |  |
| Check                                    | 1503                               | 1857        | 994       |           | 4360  |  |  |
| $CaSO_4 \cdot 2H_2O$ , 2.3               | 1959                               | 2060        | 1356      |           | 5375  |  |  |
| $CaSO_4 \cdot 2H_2O$ , 4.5               | 1361                               | 1516        | 989       |           | 3775  |  |  |
| $CaSO_4 \cdot 2H_2O$ , 6.8               | 1296                               | 1346        | 953       |           | 3594  |  |  |
| $CaSO_3 \cdot \frac{1}{2}H_2O_1$ , 2.3   | 1116                               | 1466        | 1190      |           | 3772  |  |  |
| CaSO <sub>3</sub> ½H <sub>2</sub> O, 4.5 | 828                                | 1068        | 849       |           | 2744  |  |  |
| $CaSO_3 \cdot \frac{1}{2}H_2O$ , 6.8     | 1443                               | 1503        | 1267      |           | 4213  |  |  |
| $R^2$                                    | 0.39                               | 0.28        | 0.27      |           | 0.31  |  |  |
| C.V.                                     | 61.4                               | 55.2        | 58.3      |           | 55.2  |  |  |
| 2001                                     |                                    |             |           |           |       |  |  |
| Check                                    | 1976                               | 663         | 2292      | 1305      | 6237  |  |  |
| $CaSO_4 \cdot 2H_2O$ , 2.3               | 2093                               | 887         | 2307      | 1254      | 6540  |  |  |
| $CaSO_4 \cdot 2H_2O$ , 4.5               | 1456                               | 1077        | 1684      | 1154      | 5301  |  |  |
| $CaSO_4 \cdot 2H_2O$ , 6.8               | 1488                               | 926         | 1886      | 1251      | 5550  |  |  |
| $CaSO_3 \cdot \frac{1}{2}H_2O$ , 2.3     | 1611                               | 69 <b>8</b> | 1823      | 1064      | 5196  |  |  |
| $CaSO_3 \cdot \frac{1}{2}H_2O$ , 4.5     | 1704                               | 355         | 1359      | 930       | 4347  |  |  |
| $CaSO_3 \cdot \frac{1}{2}H_2O$ , 6.8     | 1493                               | 898         | 1394      | 1098      | 4782  |  |  |
| R <sup>2</sup>                           | 0.30                               | 0.27        | 0.47      | 0.16      | 0.22  |  |  |
| C.V.                                     | 34.0                               | 83.1        | 31.4      | 35.6      | 35.2  |  |  |

Gypsum is calcium sulfate,  $CaSO_4 \cdot 2H_2O$  \* Calcium sulfite is  $CaSO_3 \cdot \frac{1}{2}H_2O$  § Yields were not statistically different.